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We study Λ and Λ̄ production asymmetries in pp̄→ Λ(Λ̄)X, pp̄→ J/ψΛ(Λ̄)X, and pp̄→ µ±Λ(Λ̄)X
events recorded by the D0 detector at the Fermilab Tevatron collider at

√
s = 1.96 TeV. We find an

excess of Λ’s (Λ̄’s) produced in the proton (antiproton) direction. This forward-backward asymmetry
is measured as a function of rapidity. We confirm that the Λ̄/Λ production ratio, measured by several
experiments with various targets and a wide range of energies, is a universal function of “rapidity
loss”, i.e., the rapidity difference of the beam proton and the lambda.

PACS numbers: 13.85.Ni, 13.60.Rj

I. INTRODUCTION

We study pp̄ collisions at a total center-of-mass energy√
s = 1.96 TeV. Among the particles produced in these

collisions are Λ’s and Λ̄’s. In this paper we examine the
question of whether the Λ and Λ̄ retain some memory of
the proton and antiproton beam directions. We consider
the picture in which a strange quark produced directly
in the hard scattering of point-like partons, or indirectly
in the subsequent showering, can coalesce with a diquark
remnant of the beam to produce a lambda particle, with
the probability increasing with decreasing rapidity differ-
ence between the proton and the lambda [1–4].

The data were recorded in the D0 detector [5–9] at
the Fermilab Tevatron collider. The full data set of
10.4 fb−1, collected from 2002 to 2011, is analyzed. We
choose a coordinate system in which the z axis is aligned

∗with visitors from aAugustana College, Sioux Falls, SD, USA,
bThe University of Liverpool, Liverpool, UK, cDESY, Hamburg,
Germany, dCONACyT, Mexico City, Mexico, eSLAC, Menlo Park,
CA, USA, fUniversity College London, London, UK, gCentro
de Investigacion en Computacion - IPN, Mexico City, Mexico,
hUniversidade Estadual Paulista, São Paulo, Brazil, iKarlsruher
Institut für Technologie (KIT) - Steinbuch Centre for Comput-
ing (SCC), D-76128 Karlsruhe, Germany, jOffice of Science,
U.S. Department of Energy, Washington, D.C. 20585, USA,
kAmerican Association for the Advancement of Science, Washing-
ton, D.C. 20005, USA, lKiev Institute for Nuclear Research, Kiev,
Ukraine, mUniversity of Maryland, College Park, MD 20742, USA,
nEuropean Orgnaization for Nuclear Research (CERN), Geneva,
Switzerland and oPurdue University, West Lafayette, IN 47907,
USA.

TABLE I: Number of reconstructed Λ plus Λ̄ or KS with
pT > 2.0 GeV in each data set.

Data set Number of events
(i) pp̄→ Λ(Λ̄)X 5.85× 105

(ii) pp̄→ J/ψΛ(Λ̄)X 2.50× 105

(iii) pp̄→ µ±Λ(Λ̄)X 1.15× 107

(i) pp̄→ KSX 2.33× 106

(ii) pp̄→ J/ψKSX 6.55× 105

(iii) pp̄→ µ±KSX 5.34× 107

with the proton beam direction and define the rapidity
y ≡ 1

2
ln [(E + pz)/(E − pz)], where pz is the outgoing

particle momentum component in the z direction, and E
is its energy, both in the pp̄ center-of-mass frame. We
measure the “forward-backward asymmetry” AFB, i.e.
the relative excess of Λ’s (Λ̄’s) with longitudinal momen-
tum in the p (p̄) direction, as a function of |y|. The
measurements include Λ’s and Λ̄’s from all sources either
directly produced or decay products of heavier hadrons.

The Λ’s (Λ̄’s) are defined as “forward” if their longitu-
dinal momentum is in the p (p̄) direction. The asymme-
try AFB is defined as

AFB ≡ σF (Λ)− σB(Λ) + σF (Λ̄)− σB(Λ̄)

σF (Λ) + σB(Λ) + σF (Λ̄) + σB(Λ̄)
, (1)

where σF (Λ) and σB(Λ) [σF (Λ̄) and σB(Λ̄)] are the for-
ward and backward cross sections of Λ [Λ̄] production.
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II. DETECTOR AND DATA

The D0 detector is described in Refs. [5–9]. The col-
lision region is surrounded by a central tracking system
that comprises a silicon micro-strip vertex detector and
a central fiber tracker, both located within a 1.9 T su-
perconducting solenoidal magnet [5], surrounded succes-
sively by the liquid argon-uranium calorimeters, layer A
of the muon system [6] (with drift chambers and scintilla-
tion trigger counters), the 1.8 T magnetized iron toroids,
and two similar muon detector layers B and C after the
toroids. The designs are optimized for vertex finding,
tracking, and muon triggering and identification at pseu-
dorapidities |η| less than 2.5, 3.0, and 2.0 respectively.
Pseudorapidity is defined as η = − ln tan(θ/2), where θ
is the polar angle with respect to the proton beam direc-
tion.

We study three data sets: (i) pp̄ → Λ(Λ̄)X , (ii)
pp̄ → J/ψΛ(Λ̄)X , and (iii) pp̄ → µ±Λ(Λ̄)X , and cor-
responding control samples with KS instead of Λ or Λ̄.
Data set (i) is collected with a prescaled trigger on beam
crossing (“zero bias events”) or with a prescaled trig-
ger on energy deposited in forward luminosity counters
(“minimum bias events”). Data set (ii) is selected with a
suite of single muon, dimuon, and dedicated J/ψ triggers,
from which J/ψ → µ+µ− candidates in association with
a Λ or Λ̄ are reconstructed. Data set (iii) is selected with
a suite of single muon triggers, and a µ and a Λ are fully
reconstructed offline. Data set (i) is unbiased, while most
events in data sets (ii) and (iii) contain heavy quarks b
or c [10, 11]. Data set (iii) has the same muon triggers
and muon selections as in Refs. [10, 11]. In particular,
the muons are required to have a momentum transverse
to the beams pT > 4.2 GeV or pz > 5.4 GeV in order
to traverse the central or forward iron toroid magnets.
The number of reconstructed Λ plus Λ̄ or KS in each
data sample is summarized in Table I. There is no strong
physics reason to require a J/ψ or µ in an event: data
sets (ii) and (iii) are analyzed because they are collected
with muon or J/ψ triggers, and therefore are available
and well understood, and data set (iii) is very large. The
overlaps of the three data sets are negligible.

The Λ’s, Λ̄’s, and KS’s are reconstructed from pairs of
oppositely charged tracks with a common vertex (V 0).
Each track is required to have a non-zero impact param-
eter in the transverse plane (IP) with respect to the pri-
mary pp̄ vertex with a significance of at least two stan-
dard deviations, and the V 0 projected to its point of
closest approach is required to have an IP significance
less than three standard deviations. The distance in the
transverse plane from the primary pp̄ vertex to the V 0

vertex is required to be greater than 4 mm. The V 0 is
required to have 2.0 < pT < 25 GeV and |η| < 2.2. For
Λ’s and Λ̄’s, the proton (pion) mass is assigned to the
daughter track with larger (smaller) momentum. This
assignment is nearly always correct because the decay
Λ → pπ− is barely above threshold. We require that
the V 0 daughter tracks not be identified as a muon. An

 M(p+ π-) [GeV]
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FIG. 1: Invariant mass distribution of Λ → pπ− candidates
for 0.0 < y < 1.0, muon charge q = +1, solenoid magnet
polarity −1, and toroid magnet polarity −1, for the pp̄ →
µ±Λ(Λ̄)X data. Other selection requirements are given in
the text.
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FIG. 2: (color online) Distributions of (a) generated and (b)
reconstructed Λ’s (blue circles) and Λ̄’s (red triangles), and (c)
the corresponding efficiencies, for pT > 2.0 GeV, from QCD
simulations of inclusive pp̄ collisions containing a minimum
parton transverse energy Emin

T > 20 GeV. For details of the
simulation see Ref. [12].

example of an invariant mass distribution M(Λ → pπ−)
is presented in Fig. 1. The D0 detector |y| acceptance
is narrower than the lambda production rapidity plateau
as shown in Fig. 2.

Control samples with KS are analyzed in the same
manner as the corresponding sets with Λ or Λ̄, except
that the track with larger momentum is assigned the
pion mass instead of the proton mass. Note that we
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count the decays KS → π+π− and KS → π−π+ sepa-
rately, where the first pion has the larger total momen-
tum. This way the former decay has kinematics similar to
Λ decays, while the latter is similar to Λ̄ decays. The pp̄
collisions produce K0’s and K̄0’s that we observe as res-
onances in invariant mass distributions of KS → π+π−

decays. Since this final state does not distinguish the
parent K0 from K̄0 (neglecting CP violation), KS de-
cays do not distinguish the p and p̄ directions, have no
physics asymmetries, and so constitute a control sample
to study detector effects.

III. RAW ASYMMETRIES AND DETECTOR

EFFECTS

We observe Λ’s and Λ̄’s through their decays Λ → pπ−

and Λ̄ → pπ+. We obtain the numbers NF (Λ) and
NB(Λ) [NF (Λ̄) and NB(Λ̄)] of reconstructed Λ’s [Λ̄’s] in
the “forward” and “backward” categories, respectively,
in each bin of |y|, by counting Λ [Λ̄] candidates in the
signal region (with invariant mass in the range 1.1067 to
1.1247 GeV) and subtracting the corresponding counts in
two side band regions (1.0927 to 1.1017 GeV, and 1.1297
to 1.1387 GeV). These four numbers define the normal-
ization N and three raw asymmetries A′

FB, A
′
NS , and

A′

ΛΛ̄
:

NF (Λ) ≡ N(1 +A′

FB)(1−A′

NS)(1 +A′

ΛΛ̄
),

NB(Λ) ≡ N(1−A′

FB)(1 +A′

NS)(1 +A′

ΛΛ̄
),

NF (Λ̄) ≡ N(1 +A′

FB)(1 +A′

NS)(1 −A′

ΛΛ̄
),

NB(Λ̄) ≡ N(1−A′

FB)(1−A′

NS)(1 −A′

ΛΛ̄
). (2)

The asymmetry A′
NS measures the relative excess of re-

constructed Λ’s plus Λ̄’s with longitudinal momentum in
the p̄ direction (north) with respect to the p direction
(south). The asymmetry A′

ΛΛ̄
measures the relative ex-

cess of reconstructed Λ’s with respect to Λ̄’s. The raw
asymmetries A′

FB , A
′
NS , and A

′

ΛΛ̄
defined in Eq. (2) have

contributions from the physical processes of the pp̄ colli-
sions (AFB , ANS , and AΛΛ̄, respectively), and from de-
tector effects. As we discuss below, the raw asymmetries
A′

NS and A′

ΛΛ̄
are dominated by detector effects, while

A′
FB is due to the physics of the pp̄ collisions with neg-

ligible contributions from detector effects. Up to second
order terms in the asymmetries, we have,

A′

FB =
NF (Λ)−NB(Λ) +NF (Λ̄)−NB(Λ̄)

NF (Λ) +NB(Λ) +NF (Λ̄) +NB(Λ̄)

+A′

NSA
′

ΛΛ̄
,

A′

NS =
−NF (Λ) +NB(Λ) +NF (Λ̄)−NB(Λ̄)

NF (Λ) +NB(Λ) +NF (Λ̄) +NB(Λ̄)

+A′

FBA
′

ΛΛ̄
,

A′

ΛΛ̄
=

NF (Λ) +NB(Λ)−NF (Λ̄)−NB(Λ̄)

NF (Λ) +NB(Λ) +NF (Λ̄) +NB(Λ̄)

+A′

FBA
′

NS . (3)

The initial pp̄ state is invariant with respect to CP-
conjugation. Note that CP-conjugation changes the signs
of ANS and AΛΛ̄, while AFB is left unchanged. A non-
zero ANS or AΛΛ̄ would indicate CP-violation.
The raw asymmetry A′

NS is different from zero if the
north half of the D0 detector has a different acceptance
times efficiency than the south half of the detector. This
detector asymmetry does not modify A′

FB or A′

ΛΛ̄
as de-

fined in Eq. (2).
Antiprotons have a larger inelastic cross section with

the detector material than protons. This difference re-
sults in a higher detection efficiency for Λ’s than Λ̄’s.
This difference in efficiencies modifies A′

ΛΛ̄
but does not

modify A′
FB or A′

NS as defined in Eq. (2).
The solenoid and toroid magnet polarities are reversed

approximately every two weeks during data taking so
that at each of the four solenoid-toroid polarity combina-
tions approximately the same number of events are col-
lected. The raw asymmetries obtained with each mag-
net polarity show variations of up to ±0.004 for A′

FB,
±0.008 for A′

NS , and ±0.003 for A′

ΛΛ̄
. Consider an event

with Λ → pπ−, and the charge-conjugate (C) event with
Λ̄ → pπ+, with the same momenta for all correspond-
ing tracks. Assume that, due to some detector geometric
effect, the former event has a larger acceptance times ef-
ficiency than the latter event for a given solenoid and
toroid polarity. Now reverse these polarities. The tracks
of the event Λ → pπ− with one solenoid and toroid po-
larity coincide with the tracks of the event Λ̄ → pπ+ with
the opposite polarities. So with reversed polarities it is
now the event with Λ̄ → pπ+ that has the larger accep-
tance times efficiency. The conjugation Λ ↔ Λ̄ reverses
the signs of A′

FB and A′

ΛΛ̄
, and leaves A′

NS unchanged.
We conclude that by collecting equal numbers of Λ plus
Λ̄ for each solenoid and toroid magnet polarity combina-
tion, geometrical detector effects are canceled for A′

FB

and A′

ΛΛ̄
, but not for A′

NS (if C symmetry holds). We
weight events for each polarity combination to achieve
these cancellations.
We correct A′

NS using the measurements with KS by
setting ANS = A′

NS − A′
NS(KS). None of the detector

effects discussed above affects A′
FB as defined in Eq. (2),

so we set A′
FB = AFB (as a cross-check we verify this

equality with KS , i.e. A′
FB(KS) = 0 within statistical

uncertainties). We do not measure AΛΛ̄ as we are not
able to separate the effect due to different reconstruction
efficiencies from the raw asymmetry A′

ΛΛ̄
.

IV. RESULTS FOR MINIMUM BIAS EVENTS

We now consider minimum bias events pp̄ → Λ(Λ̄)X
and the control sample pp̄ → KSX . Distributions of
pT , pz, and y of reconstructed Λ’s and Λ̄’s are shown
in Fig. 3. The raw asymmetries of Λ, Λ̄ and KS for
pT > 2.0 GeV are presented in Fig. 4. We expect the
asymmetries A′

FB(KS) and A′

ΛΛ̄
(KS) to be zero, while

A′
NS(KS) is not necessarily zero. These expectations are
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FIG. 3: (color online) Distributions of (a) pT , (b) pz, and
(c) y of reconstructed Λ’s (blue circles) and Λ̄’s (red triangles)
with pT > 2.0 GeV, for the minimum bias data sample pp̄→
Λ(Λ̄)X.

satisfied within the statistical uncertainties. From Fig. 4
(c) we obtain A′

ΛΛ̄
≈ 0.022. This asymmetry is different

from zero as expected from the different inelastic cross-
sections of p and p̄, and of Λ and Λ̄, with the detector
material. The asymmetries in Fig. 4 were obtained from
Eqs. (3) but neglecting the quadratic terms. Therefore
the forward-backward asymmetries shown in Fig. 4 need
corrections A′

NSA
′

ΛΛ̄
due to detector effects. These cor-

rections, obtained bin-by-bin from Fig. 4 (b) and (c), are
measured to be consistent with zero within their statisti-
cal uncertainties. As they are small, they are not applied
as corrections, but are treated as systematic uncertain-
ties. They vary from ±0.0001 for the first bin of |y| to
±0.0004 for the 1.5 < |y| < 1.75 bin. The results for
AFB are presented in Fig. 4 and Table II. The corrected
asymmetry ANS = A′

NS − A′
NS(KS) is consistent with

zero within the statistical uncertainties, so we observe no
significant CP violation in ANS , as shown in Fig. 5.
In Figs. 6 and 7, the asymmetry AFB shown in Fig. 4

is compared with other experiments that study collisions
pZ → Λ(Λ̄)X for several targets Z = p, p̄, Be and Pb.
For the D0 minimum bias data in Figs. 6 and 7, we plot
[σB(Λ)+σB(Λ̄)]/[σF (Λ)+σF (Λ̄)] = (1−AFB)/(1+AFB).
We should note that the point y = 0 in the center of mass
for pp̄ collisions has a Λ̄/Λ production ratio equal to 1 if
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FIG. 4: (color online) Asymmetries (a) AFB = A′
FB, (b)

A′
NS, and (c) A′

ΛΛ̄
of reconstructed Λ and Λ̄ (blue circles) and

KS (red triangles) with pT > 2.0 GeV, as functions of |y|, for
the minimum bias data samples pp̄ → Λ(Λ̄)X or pp̄ → KSX
respectively. Uncertainties are statistical.

CP is conserved, which is not necessarily the case for pp
collisions, so this D0 point at large rapidity loss should be
excluded from the comparison with pp data. From Figs.
6 and 7 we conclude that the Λ̄/Λ production ratio is
approximately a universal function of the “rapidity loss”
∆y ≡ yp − y, independent of

√
s or target Z. Here yp is

the rapidity of the proton beam, and y is the rapidity of
the Λ or Λ̄.

V. RESULTS FOR EVENTS WITH A J/ψ OR A

MUON

The results of the measurements with the data set
pp̄ → J/ψΛ(Λ̄)X are presented in Fig. 8 and Table II.
We note that ANS is consistent with zero, whereas AFB

is significantly nonzero at large |y|.
We now consider the large data sample pp̄ →

µ±Λ(Λ̄)X . Rapidity distributions for reconstructed Λ’s
and Λ̄’s are presented in Fig. 9. After accounting for
the different efficiencies to detect Λ and Λ̄, we find that
there are more events Λµ+ and Λ̄µ−, than events Λµ−

and Λ̄µ+. Examples of decays with a Λµ+ correlation are:
Λ+
c → Λµ+νµ and pp̄→ ΛK+X followed by K+ → µ+νµ



7

TABLE II: Forward-backward asymmetry AFB of Λ and Λ̄ with pT > 2.0 GeV in minimum bias events pp̄ → Λ(Λ̄)X, events
pp̄→ J/ψΛ(Λ̄)X, and events pp̄→ µ±Λ(Λ̄)X. The first uncertainty is statistical, the second is systematic.

|y| AFB × 100 (min. bias) AFB × 100 (with J/ψ) AFB × 100 (with µ)
0.00 to 0.25 −0.12 ± 0.37±0.01 −0.21 ± 0.58±0.01 0.16± 0.09 ± 0.02
0.25 to 0.50 0.33 ± 0.36±0.01 0.10 ± 0.57±0.02 0.24± 0.09 ± 0.02
0.50 to 0.75 0.45 ± 0.35±0.01 0.69 ± 0.56±0.02 0.67± 0.08 ± 0.02
0.75 to 1.00 0.79 ± 0.35±0.02 0.55 ± 0.56±0.02 0.85± 0.08 ± 0.02
1.00 to 1.25 1.99 ± 0.37±0.02 0.69 ± 0.59±0.03 1.57± 0.09 ± 0.02
1.25 to 1.50 2.20 ± 0.45±0.02 1.72 ± 0.72±0.03 1.98± 0.10 ± 0.04
1.50 to 1.75 3.75 ± 0.68±0.03 3.24 ± 1.12±0.06 2.53± 0.16 ± 0.06
1.75 to 2.00 2.37 ± 1.18±0.04 2.64 ± 2.06±0.06 3.11± 0.30 ± 0.06

TABLE III: Forward-backward asymmetry AFB of Λ and Λ̄ in bins of pT in events pp̄ → µ±Λ(Λ̄)X. The first uncertainty is
statistical, the second is systematic.

|y| AFB × 100 AFB × 100 AFB × 100
2 < pT < 4 GeV 4 < pT < 6 GeV pT > 6 GeV

0.00 to 0.25 0.21 ± 0.09±0.02 −0.27 ± 0.28±0.02 0.57 ± 0.69±0.02
0.25 to 0.50 0.25 ± 0.09±0.02 0.20 ± 0.27±0.02 −0.47 ± 0.63±0.02
0.50 to 0.75 0.70 ± 0.08±0.02 0.50 ± 0.26±0.02 1.11 ± 0.58±0.02
0.75 to 1.00 0.82 ± 0.08±0.02 1.02 ± 0.25±0.02 0.57 ± 0.54±0.02
1.00 to 1.25 1.60 ± 0.10±0.02 1.39 ± 0.25±0.02 2.38 ± 0.52±0.02
1.25 to 1.50 1.94 ± 0.11±0.04 2.17 ± 0.27±0.04 2.43 ± 0.57±0.04
1.50 to 1.75 2.61 ± 0.17±0.06 2.10 ± 0.42±0.06 4.77 ± 0.85±0.06
1.75 to 2.00 3.05 ± 0.32±0.06 3.49 ± 0.83±0.06 6.32 ± 1.69±0.06
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FIG. 5: Corrected asymmetry ANS = A′
NS − A′

NS(KS) of
Λ and Λ̄ with pT > 2.0 GeV, as a function of |y|, for the
minimum bias data sample pp̄ → Λ(Λ̄)X. Uncertainties are
statistical.

(note that the Λ and K+ share an ss̄ pair). The re-
verse Λµ− correlation occurs for Λb → µ−Λ+

c ν̄µX with
Λ+
c → ΛX . Measurements of AFB(|y|) for events with

µ+ or µ− are found to be consistent within statistical
uncertainties, so we combine events with µ+ and µ− and
obtain the results presented in Fig. 10. We assign to AFB

a systematic uncertainty equal to the entire detector ef-
fect, A′

NSA
′

ΛΛ̄
. Numerical results are presented in Table

II. The forward-backward asymmetry AFB as a function
of |y| for different lambda transverse momentum bins is
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FIG. 6: Λ̄/Λ production ratio as a function of the rapidity
loss ∆y ≡ yp − y for several experiments that study reac-
tions pZ → Λ(Λ̄)X for targets Z = p, p̄, Be and Pb. The
experiments are ALICE [13], ATLAS [14], D0 (this analysis),
STAR [15], LHCb [16], ISR R-607 [17], ISR R-603 [18], and
the fixed target experiment Fermilab E8 studying p-Be and
p-Pb collisions at a beam energy of 300 GeV [19].
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FIG. 7: Same as Fig. 6 with logarithmic scale.

 |y|

 A
F

B

0

0.02

0.04

0 0.5 1 1.5 2

DØ, 10.4 fb-1(a)

 |y|

 A
N

S

-0.02

-0.01

0

0.01

0 0.5 1 1.5 2

DØ, 10.4 fb-1(b)

FIG. 8: Asymmetries (a) AFB = A′
FB and (b) ANS =

A′
NS −A′

NS(KS) of Λ and Λ̄ with pT > 2.0 GeV, as functions
of |y|, for the data sample pp̄ → J/ψΛ(Λ̄)X. Uncertainties
are statistical.

shown in Fig. 11 and Table III. Note that AFB is only
weakly dependent on pT (Λ).
The final results of this analysis are summarized in

Tables II and III, and Figs. 11 and 12.

VI. CONCLUSIONS

We have measured the forward-backward asymmetry
of Λ and Λ̄ production AFB as a function of rapidity |y|
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FIG. 9: (color online) Distributions of rapidity y of re-
constructed Λ’s (blue circles) and Λ̄’s (red triangles) for
events with (a) µ+ or (b) µ−, for pT > 2.0 GeV, for events
pp̄→ µ±Λ(Λ̄)X.

for three data sets: pp̄→ Λ(Λ̄)X , pp̄→ J/ψΛ(Λ̄)X , and
pp̄→ µ±Λ(Λ̄)X . The asymmetry AFB is a function of |y|
that does not depend significantly on the data set or data
composition (see Fig. 12), and is weakly dependent on pT
(see Fig. 11). The measurement of AFB in pp̄ collisions
can be compared with the Λ̄/Λ production ratio mea-
sured by a wide range of proton scattering experiments.
This production ratio is confirmed to be approximately
a universal function of the “rapidity loss” yp − y, that
does not depend significantly (or depends only weakly)
on the total center of mass energy

√
s or target (see Figs.

6 and 7). This result supports the view that a strange
quark produced directly in the hard scattering of point-
like partons, or indirectly in the subsequent showering,
can coalesce with a diquark remnant of the beam particle
to produce a lambda with a probability that increases as
the rapidity difference between the proton and lambda
decreases.
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6.0 GeV, and (c) pT > 6.0 GeV. Uncertainties are statistical.
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FIG. 12: (color online) Asymmetry AFB as a function of |y|
for events pp̄→ Λ(Λ̄)X (green circles), pp̄→ J/ψΛ(Λ̄)X (red
squares), and pp̄ → µ±Λ(Λ̄)X (blue triangles) for pT > 2.0
GeV. Uncertainties are statistical.
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